Unsupervised Clustering for Fault Diagnosis in Nuclear Power Plant Components
نویسندگان
چکیده
The development of empirical classification models for fault diagnosis usually requires a process of training based on a set of examples. In practice, data collected during plant operation contain signals measured in faulty conditions, but they are ‘unlabeled’, i.e., the indication of the type of fault is usually not available. Then, the objective of the present work is to develop a methodology for the identification of transients of similar characteristics, under the conjecture that faults of the same type lead to similar behavior in the measured signals. The proposed methodology is based on the combined use of Haar wavelet transform, fuzzy similarity, spectral clustering and the Fuzzy CMeans algorithm. A procedure for interpreting the fault cause originating the similar transients is proposed, based on the identification of prototypical behaviors. Its performance is tested with respect to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear power reactor.
منابع مشابه
Model-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملMOX–Report No. 24/2009 Optimized Fuzzy C-Means Clustering and Functional Principal Components for Post-Processing Dynamic Scenarios in the Reliability Analysis of a Nuclear System
This paper deals with the processing of accident scenarios generated from a dynamic reliability analysis of a Nuclear Power Plant (NPP). A large number of scenarios are simulated to account for the influence of the timing and magnitudes of fault events on the accident end states; post-simulation processing is then required for retrieving the safety-relevant information. For classifying the fina...
متن کاملAn Integrated Framework Based on Data Driven Techniques for Process Supervision
An integrated framework for process monitoring and supervision is proposed. Firstly, the data is freed from outliers using mean minimum distance clustering technique. A novel technique for unsupervised pattern classification is proposed. It is applied for simultaneous fault detection and diagnosis. A continuous pilot plant is used to check the efficiency of the proposed strategy. The result sho...
متن کاملارائه یک سیستم ترکیبی جدید در تشخیص نوع خطا در ترانسفورماتورهای قدرت براساس مقادیر گازهای حل شده در روغن
Transformers are one of the important and at the same time expensive components of power systems. On timely diagnosis of fault in such systems is still among the researchers interest. Fault diagnosis of transformers based on the dissolved gas analysis is a new technique in the field of fault diagnosis of power transformers. IEC, Roger’s and Dornenburg techniques are the mostly used techni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Computational Intelligence Systems
دوره 6 شماره
صفحات -
تاریخ انتشار 2013